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Abstract
In this paper we analyse the electronic properties of Dirac electrons in finite-size ribbons and in
circular and hexagonal quantum dots. We show that due to the formation of sub-bands in the
ribbons it is possible to spatially localize some of the electronic modes using a p–n–p junction.
We also show that scattering of confined Dirac electrons in a narrow channel by an infinitely
massive wall induces mode mixing, giving a qualitative reason for the fact that an analytical
solution to the spectrum of Dirac electrons confined in a square box has not yet been found. A
first attempt to solve this problem is presented. We find that only the trivial case k = 0 has a
solution that does not require the existence of evanescent modes. We also study the spectrum of
quantum dots of graphene in a perpendicular magnetic field. This problem is studied in the
Dirac approximation, and its solution requires a numerical method whose details are given. The
formation of Landau levels in the dot is discussed. The inclusion of the Coulomb interaction
among the electrons is considered at the self-consistent Hartree level, taking into account the
interaction with an image charge density necessary to keep the back-gate electrode at zero
potential. The effect of a radial confining potential is discussed. The density of states of circular
and hexagonal quantum dots, described by the full tight-binding model, is studied using the
Lanczos algorithm. This is necessary to access the detailed shape of the density of states close
to the Dirac point when one studies large systems. Our study reveals that zero-energy edge
states are also present in graphene quantum dots. Our results are relevant for experimental
research in graphene nanostructures. The style of writing is pedagogical, in the hope that
newcomers to the subject will find this paper a good starting point for their research.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene was discovered in 2004 at the Manchester Centre for
Mesoscience and Nanotechnology, University of Manchester,
UK, directed by Andre Geim [1, 2]. Previously, graphene was
known only as an intrinsic part of three-dimensional systems:
as individual atomic planes within graphite or its intercalated
compounds and as the top few layers in epitaxially grown
films [3]. In certain cases it was possible to even grow
graphene monolayers on top of metallic substrates and silicon
carbide [3]. However, coupling with the substrate did now
allow studies of electronic, optical, mechanical, thermal and
other properties of graphene, which all became possible after
individual graphene layers were isolated. There are by now a

number of review papers on graphene available in the literature,
both qualitative [4–8] and quantitative [9, 10] in nature.

The original method of graphene isolation is based on
micro-mechanical cleavage of a graphite surface—the so-
called Scotch Tape method. This method, however, has a
low yield of graphene micro-crystallites. Recently, a new
method [12, 11], based on liquid-phase exfoliation of graphite,
has proved to produce a large yield of graphene micro-
crystallites, with large surface areas. A chemical approach to
graphene production has also been achieved using exfoliation–
reintercalation–expansion of graphite [13].

It is by now well known that graphene is a sheet of
carbon atoms one atom thick, arranged in a honeycomb
(hexagonal) lattice, having therefore two carbon atoms per
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unit cell. The material can be considered the ultimate thin
film. In a way, this material was the missing allotrope of
pure carbon materials, after the discovery of graphite [14, 15],
diamond [16], fullerenes and carbon nanotubes [14]. In fact we
can think of graphene as being the raw material from which all
other allotropes of carbon can be made [4, 5].

Although the Manchester team produced two-dimensional
micro-crystallites of other materials [2], graphene attracted
wide attention [17] from scientists due to its unexpected
properties, associated with both fundamental and applied
research.

Graphene has a number of fascinating properties. The
stiffness of graphene has been proved to be so large,
having a Young modulus E � 1.0 TPa, that makes it
the strongest material stiffness ever measured [11, 18]. In
addition, the material has high thermal conductivity [19], is
chemically stable and almost impermeable to gases [20], can
withstand large current densities [1], has ballistic transport
over sub-micron scales with very high mobilities in its
suspended form (μ � 200.000 cm2 V−1 s−1) [1, 21, 22]
and shows ambipolar behaviour [1]. Ballistic transport is
in general associated with the observation of conductance
quantization in narrow channels [23], which have recently
been observed [24]. The above properties and its two-
dimensional nature makes graphene a promising candidate for
nano-electronic applications.

From the point of view of physical characterization we
are interested in the mechanical properties of graphene, its
electronic spectrum, its transport properties of heat, charge
and spin, and its optical properties. The high stiffness of
the material is responsible for the micro-crystallites keeping
their planar form over time, without rolling up, even when
graphene is held fixed by just one of its ends [11]. Interestingly,
graphene is now being used, by combining electrostatic
deposition methods and the chemical nature of the surrounding
atmosphere, to produce rolled up nanotubes with controlled
dimensions and chiralities [25]. The electronic spectrum of
graphene and of graphene bilayers has been measured by
angle resolved photoemission spectroscopy (ARPES) [26–29],
fitting well with tight-binding calculations using a first nearest
neighbour hopping t � 3 eV and a second nearest neighbour
hopping t ′ � 0.13 eV [30].

The transport of heat has been measured experimentally
and studied theoretically in a few papers [19, 31–34], and
more research is needed to fully understand its properties,
especially since the irradiation of graphene with laser light
has been found to heat up the system locally [19]. The
transport properties of graphene on top of silicon oxide have
been extensively studied, but in a suspended geometry the
few available experimental and theoretical studies are still
recent [22, 35–37]. Of particular interest is the contribution
of phonons to the transport properties of graphene. Although
in the beginning of graphene research phonons were not
considered to be important, recent experimental results show
that this is, in fact, not the case [21, 38].

Of particular interest is the finite conductivity of graphene
at the Dirac point, σD, the measured value of which is in
contradiction to the naive single particle theory which predicts

either infinite or zero resistance3. The value of σD is of the
order of

σD � λ4
e2

h
, (1)

with λ a number of order unity. We emphasize that
equation (1) is the value for the conductivity of the material
at the Dirac point, and not the conductance of a narrow
channel. On the other hand, there is a discrepancy between
the more elaborated theoretical descriptions of σD and the
experimentally measured values, since the theory predicts the
value σ theor.

D = σD/π [40–43], and most of the experiments
measure a value given by equation (1). Adding to the
problem, two experimental groups reported measurements of
the conductivity of graphene consistent with the theoretical
calculation [44, 45]. In this context it should be stressed that
whereas the result of σD obtained in [40] comes about due to an
increase of the density of states due to disorder (albeit small)
at the Dirac point, the value for σD computed in [41, 42] is
based on the existence of evanescent waves in clean graphene
ribbons with large aspect ratio W/L (W is the width and L in
the length of the ribbon). Recent experiments [44, 45] seem to
confirm this latter view of the problem, since the value σ theor.

D
is only measured in the regime W/L � 1. The transport
of spin in graphene has been studied experimentally in few
publications [46–49], and much work remains to be done.

The optical properties of graphene and of bilayer graphene
have only recently been studied experimentally [50, 51], in
contrast to the corresponding theoretical studies. The first
theoretical study of graphene’s optical absorption was made by
Peres et al [40], followed by several studies by Gusynin et al
and a review in [52]. The most relevant aspect was that the
infrared conductivity of graphene, for photon energies larger
than twice the chemical potential, has a universal value given
by [40, 52, 37]

σ0 = π

2

e2

h
. (2)

Theoretical studies preceded experimental measurements for
the bilayer as well [55–57]. Due to the existence of four
energy bands in bilayer graphene, its optical spectrum has more
structure than the corresponding single layer one.

It was experimentally found that for photon energies in the
visible range [53] equation (2) also holds within less than 10%
difference [54]. This result makes graphene the first conductor
with light transmissivity in the frequency range from infrared
to the ultraviolet as high as

T � 1 − πα ∼ 98%, (3)

with α the fine structure constant. This makes it obvious
that graphene can be used as a transparent metallic electrode,
having found applications in solar cell prototypes [58, 59] and
in gateable displays [60]. The same conclusions are obtained
from studying the optical conductivity of graphite [61]. The

3 The naive single particle theory is related to the semi-metallic nature of
the spectrum of graphene. The absence of a gap would suggest an infinite
conductivity; the zero density of states at the Dirac point would suggest zero
conductivity. The fact is that in the clean case the DC conductivity is finite at
zero temperature and zero at finite temperature [39].
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transparency of graphene has an obvious advantage over the
more traditional materials used in the solar cell industry,
namely indium tin oxide (ITO) and fluorine tin oxide (FTO),
which have a very low light transmission for wavelengths
smaller than 1500 nm; in the visible range the transparency of
these two materials is larger than ∼85%. Furthermore, these
traditional materials have a set of additional problems [58, 60],
such as chemical instability, which are not shared by graphene.
On the other hand, ITO and FTO have a low resistivity
(∼5 � m), a figure that graphene cannot match, if one leaves
aside the possibility of graphene film deposit from solution.

Finally, the interaction of graphene with single molecules
allows graphene to be used as a detector of tiny numbers of
molecules [62] and to enhance, in a dramatic way, the sensi-
bility of ordinary transmission electron microscopes [12, 63],
allowing the observation of adsorbates, such as atomic hydro-
gen and oxygen, which can be seen as if they were suspended
in free space.

Many of the above properties are expected to be
present in graphene nanoribbons. On the other hand,
aspects related to the quantum confinement of electrons in
graphene, both considering confinement in one (quantum
wire) or two (quantum dot) dimensions, is expected to bring
new interesting phenomena. The present state of the art
of material manipulation technologies does not allow the
production structures, in a top-down approach, smaller than
10 nm. Nevertheless, many aspects associated with the
quantum confinement of electrons in graphene, either due
to narrow constrictions or due to the formation of quantum
dots, have already been investigated experimentally [64–68]
and theoretically [69–77]. One important consequence of
quantum confinement is the appearance of an energy gap in the
electronic spectrum of graphene, an important characteristic
if graphene is to be used as a material to build nano-
transistors [79]. In this paper we will address several properties
of confined Dirac electrons by considering both nano-wires
and quantum dots of graphene. In doing this we use both
the continuous Dirac approximation and the tight-binding
description, choosing whichever one is more appropriate for
the given problem.

In this paper we will address several properties of
confined Dirac electrons by considering both nano-wires and
quantum dots of graphene, both using the continuous Dirac
approximation and the tight-binding model. We start by
discussing the confinement of massless Dirac fermions, stating
that such cannot be achieved by electrostatic potentials due
to Klein tunnelling [10]. One possible way out is to change
locally the spectrum from the massless to massive case and
taking the limit M → ∞ at the end of the calculation. This
type of boundary condition is termed an infinite mass boundary
condition. Other possibility is the use of boundary conditions
derived from the tight-binding solution [80]. The differences
between the two approaches occur only for mini-bands close
to the Dirac point, where the slightly different quantization
rule of the momentum leads to slightly different values of
the energy spectrum. For those cases where the length of
the ribbon is much larger then the lattice spacing there is
almost no difference between the two approaches. Another

difference between the two types of boundary condition lies
in the fact that for zigzag nanoribbons there are surface states
and for armchair nanoribbons there are metallic states for some
particular values of the ribbon width; for the infinite mass
boundary condition both these two possibilities are absent.
Nevertheless, from the experimental point of view [24, 79]
the nanoribbons do not have a well-defined edge structure—
they are not either pure zigzag or pure armchair. As a
consequence, the ribbons patterned from graphene crystallites
are found to have a finite energy gap [24, 79]. Therefore, our
use of the infinite mass boundary condition is experimentally
justified and can be thought of as a phenomenological model
for the one-dimensional bands present in the nanoribbons (see
equation (1) of [24]). Of particular interest is our result of
the what happens when a Dirac electrons is reflected back
at the end of a semi-infinite graphene nanoribbon. Contrary
to the Schrödinger case, mode mixing takes place in this
scattering event, which is a consequence of the confinement
in the transverse direction and the spinorial nature of the
wavefunction. One aspect we do not address in our paper is
the formation of energy gaps in zigzag nanoribbons due to the
formation of magnetic states at the edges of the ribbon [81] and
also proposed for the bilayer case [82].

If graphene is patterned in such a way that confinement
is induced in wo dimensions, one enters the realm of
artificial atoms or graphene quantum dots. As we have
mentioned above, there is already some literature available
on graphene quantum dots [69–77], but these studies have
not address the effect of electron–electron interactions in the
dot when the system is gated away from the Dirac point
and how these interactions change the single particle energy
levels of the system. Of special interest is the interference
of electrons in graphene rings [73], an aspect that is not
covered in our paper. In this paper we study the effect of
electron–electron interactions at the Hartree level. Quantum
dots have been studied either using the effective Dirac
Hamiltonian [76, 78], with an additional central potential,
or using the natural boundary conditions introduced by the
tight-binding Hamiltonian [77]. In our study we introduce
both the boundary condition implied by the tight-binding
model [80] and another extra central potential energy which
represents both the effect of the etching and of the gates,
together with electron–electron interaction. This additional
potential is treated exactly using a numerical model developed
specifically for this problem. We found that in this case
the energy levels vary in energy with the angular momentum
quantum number. Our studies therefore extend previous ones
on graphene quantum dots.

2. The tight-binding model and the Dirac
approximation

The experimental work cited in section 1 constitutes a vast
body of evidence that the low energy theory of electrons in
graphene is described by the two-dimensional Dirac equation,
which is obtained as an k · p expansion around the Dirac
points in momentum space [9, 83]. In figure 1 we represent
a finite-size ribbon of a hexagonal lattice. Two features are of
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A

B

aa1 2

Figure 1. A honeycomb ribbon, with zigzag edges (top and bottom)
and armchair edges (vertical ones), with the carbon atoms belonging
to the sub-lattices A and B clearly differentiated from each other
(with several carbon atoms represented). The lattice unit vectors a1

and a2 are also shown.

importance: the first is that the lattice is not a Bravais lattice,
being instead made of two inter-penetrating triangular lattices,
giving rise to two geometrically non-equivalent carbon atoms,
termed A and B; the second is that there are two different types
of edges present—zigzag and armchair edges. These types
of edge play a different role in the physics of the ribbon. In
particular, note that the zigzag edges are made up of a single
type of atom, B on top and A at the bottom (in the case of this
figure). As is shown in figure 1, we can choose the direct lattice
vectors to be the following:

a1 = a

2
(−1,

√
3), (4)

a2 = a

2
(1,

√
3), (5)

where a = 2.46 Å is the lattice vector length. As a
consequence, the reciprocal lattice vectors are

b1 = 2π

a

(
−1,

1√
3

)
, (6)

b2 = 2π

a

(
1,

1√
3

)
. (7)

The so-called Dirac points in the honeycomb Brillouin zone
are conveniently chosen to be

K = 4π

3a
(1, 0), (8)

K ′ = 4π

3a
(−1, 0). (9)

If one considers only the hopping process t (first nearest
neighbour hopping), the tight-binding Hamiltonian is very
easily written as (Nc is the number of unit cells in the solid)

H = −t
Nc∑

i,δ,σ

(a†
i,σbi+δ,σ + h.c.), (10)

where a†
i,σ creates an electron with spin projection σ in the π -

orbital of the carbon atom of the sub-lattice A, and of the unit

cell i ; a similar definition holds for b†
i,σ . Nc is the number

of unit cells in the crystal and δ represents the three vectors
connecting the three first neighbours of the carbon atom A.
The exact diagonalization of this problem is straightforward,
leading to

E± = ±t

√
3 + 2 cos(akx)+ 4 cos

(a

2
kx

)
cos

(
a
√

3

2
ky

)
.

We can expand this relation near the Dirac points, obtaining
(k = q + K)

E± � ±vF|	q|, (11)

which is a massless Dirac-like linear dispersion relation, where
the velocity of light is substituted by vF = a

√
3

2h̄ t � 106 m s−1,
the Fermi velocity. To obtain the effective Hamiltonian obeyed
by the electrons near the Dirac points we write the matrix
Hamiltonian in momentum space as

Hk = −t

(
0 sk

s∗
k 0

)
, (12)

with sk given by (k = q + K)

sk = 1 + eiK·a1 eiq·a1 + eiK·a2 eiq·a2

� −a
√

3

2
(qx + iqy),

leading to the effective Hamiltonian (one valid near K and the
other near K ′)

HK(q) = vFσ
∗ · q (13)

HK ′(q) = vFσ · q, (14)

with σ = (σx , σy) and σ ∗ = (σx ,−σy). The Hamiltonian (13),
or alternatively (14), will be the starting point of our
discussion.

Let us assume that it is possible to create a potential such
that a term of the form

V =
Nc∑
i,σ

v2
Fm(a†

i,σai,σ − b†
i,σbi,σ ), (15)

is added to the Hamiltonian (10). In terms of the formalism
used to write the effective Hamiltonian (13) and (14), this term
is rewritten as

V = v2
Fmσz, (16)

and it corresponds to the presence of a mass term in the
Hamiltonian. This type of term can be generated by covering
the surface of graphene with gas molecules [84] or by
depositing graphene on top of boron nitride [85–87]. The
eigenvalues of HK + V are easily obtained, leading to E =
±
√
v2

Fh̄2|k|2 + m2v4
F, with |k| =

√
k2

x + k2
y , and the same for

HK ′ + V .

3. Confinement of Dirac electrons on a strip

Our goal in this section is to derive a mathematical framework
for describing the effect of confinement on Dirac electrons.
The confinement can be produced either by etching, by the
reduced dimensions of the graphene crystallites or by the
application of gate potentials (here Klein tunnelling poses
strong limitations on the use of such a method).
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3.1. Boundary conditions and transverse momentum
quantization

The mathematical description of the confinement requires
the imposition of appropriate boundary conditions to the
Dirac fermions. Although, for graphene ribbons, the two
types of edges discussed above impose two different types of
boundary conditions [80], we shall use here the infinite mass
confinement4 proposed by Berry and Mondragon [91]. For
large ribbons, there will be no important difference between
the two types of boundary condition [92], except that the
infinite mass boundary condition is not able to produce edge
states [93], which are present in ribbons with zigzag edges.

We shall generalize some of the results of [41, 91] by
considering the case of Dirac fermions with a finite mass.
The mass profile in the transverse direction (y) of the strip
is represented in figure 2. The boundary conditions that the
wavefunction has to obey, at the spatial point where the mass
changes from m to M , are derived considering the reflection
of the wavefunction at the boundary. Let us first consider the
reflection at y = L/2. The wavefunction in the central region
(I) is given by

ψI(x, y) =
[(

1
fI(E) eiθk

)
eiky y

+ R

(
eiθk fI(E)−1

1

)
e−iky y

]
eikx x , (17)

with θk = arctan(ky/kx),

fI(E) = E − mv2
F√

E2 − m2v4
F

. (18)

In zone II (y > L/2), the solution has the form

ψII(x, y) = T

(
1

fII(E)

)
eiqy y eikx x , (19)

with

fII(E) = E − Mv2
F

vFh̄(kx − iqy)
, (20)

and

qy = ±
√

E2 − M2v4
F

v2
Fh̄2 − k2

x , (21)

4 It is important to comment here on this particular choice for the boundary
condition. Using the k · p approach of DiVincenzo and Mele [83] one
learns that vF ∝ 1/m, where m is the bare electron mass. On the other
hand, one considers that graphene electrons cannot propagate in a region
where the material is absent, and therefore have zero velocity there. Due to
the proportionality vF ∝ 1/m this can be achieved taking the limit m →
∞. Therefore we could think that confinement of Dirac fermions could be
achieved with a position dependent Fermi velocity vF(y) that goes to zero
at the edge of the strip. Unfortunately this program does not work. The
Berry and Mondragon boundary condition [91] corresponds to a change in
the nature of the spectrum, and is somewhat artificial concerning graphene.
The consequences of the different boundary conditions are: the properties of
the wavefunction at the graphene edges do depend on the different choices
of boundary conditions, but the bulk behaviour of the electronic states is
essentially the same for all them; very close to the neutrality point the choice
of boundary conditions does again matter, but at finite doping this is no longer
the case. The choice of the Berry and Mondragon boundary condition [91]
does introduce a certain degree of simplicity to the calculations.

Figure 2. Scheme of the mass confinement (along y) with mass m
inside the strip and mass M outside. The dashed line represents the
energy of the electron.

where the energy values are given by the same expression as
that for zone I. As we want to take the limit M → ∞, we will
assume Mv2

F > E , which implies that

qy = ±i

√
M2v4

F − E2

v2
Fh̄2

+ k2
x = ±i|qy|, (22)

and thus

fII(E) = E − Mv2
F

vFh̄(kx + |qy|) = E − Mv2
F

vFh̄

(
kx ±

√
M2v4

F−E2

v2
F h̄2 + k2

x

) ,

(23)
where the sign ± in front of the square root applies to the
wavefunction that is propagating in the positive/negative y
direction. Imposing the boundary condition associated with
the Dirac equation for a reflection at y = L/2,

ψI

(
x,

L

2

)
= ψII

(
x,

L

2

)
, (24)

one obtains
ψI1

ψI2

= ψII1

ψII2

= 1

fII(E)
. (25)

Taking the limit M → ∞ the boundary conditions reduce to

ψI1

ψI2

∣∣∣∣∣
y=−L/2

= +1, (26)

ψI1

ψI2

∣∣∣∣∣
y=L/2

= −1. (27)

Now one wants to write down the wavefunction of
electrons propagating on the strip taking into account the
confinement due to the mass term. The most general
wavefunction is of the sum of two counter-propagating waves
in the y direction

ψ(x, y) = χ(y) eikx x , (28)

5
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Figure 3. Energy levels of a ribbon 10 nm wide. The transverse
modes range from n = 0 to 8, for both particles and holes.

where

χ(y) = A

(
1

fI(E) eiθk

)
eiky y + B

(
1

fI(E) e−iθk

)
e−iky y.

(29)
It is always possible to redefine B such that

χ(y) = A

(
1

fI(E) eiθk

)
eiky y + B

(
eiθk fI(E)−1

1

)
e−iky y,

(30)
a procedure that proves useful later on. Imposing the boundary
conditions (27), one obtains (considering the strip to be in the
range 0 < y < L for simplicity)

B = 1 − fI(E) eiθk

1 − fI(E)−1 eiθk
A, (31)

for the relation between the coefficients, and

eiky L = − 1 − fI(E) eiθk

1 − fI(E)−1 eiθk

1 + fI(E)−1 eiθk

1 + fI(E) eiθk
(32)

for the energy quantization. It is clear that the admissible
values of ky are energy dependent. Considering the limit
M → ∞ one obtains, from equation (31), the simpler result
A = B , and, from equation (32), the condition ei2ky L = −1,
which leads to the transverse momentum quantization rule [91]

kyn = π

2L
+ nπ

L
, where n = 0,±1,±2, . . . . (33)

The result for momentum quantization in equation (33) is quite
similar to that found for nanoribbons with armchair edges5.
Putting all this together, the obtained results are summarized
as:

ψn,k(x, y) = χn,k(y) eikx ,

χn,k(y) = A

[(
1

zn,k

)
eiqn y +

(
zn,k

1

)
e−iqn y

]
,

(34)

where we have used k = kx , qn = kyn , s = ±1 = sgn[E] and

zn,k = s eiθk = s
k + iqn√
k2 + q2

n

.

5 From [80] the momentum quantization for nanoribbons with armchair edges
has the form kn = nπ/(L + a/2)+ 2π/(3a). The constant term in kn implies
that the system has an energy gap.

 

 

 
 

 

x

y V

L

0

Figure 4. Representation of a step potential in a strip with lateral
confining infinite mass. Zone I is for x < 0 and zone II is for x > 0.
The dashed lines represent the confinement of the electrons.

If we ignore questions of convergence, we recognize that this
form for zn,k does not require k or qn to be real. We are only
assuming k2 + q2

n > 0. The dependence of the energy E on k
shows a number of sub-bands separated by energy gaps; this is
shown in figure 3 for a ribbon 10 nm wide. It is clear that for
such a narrow ribbon one has large energy gaps between two
consecutive sub-bands.

Let us represent equation (34) as |
n,k〉 = |χn,k〉 eikx , it
is then simple to show that 〈
m,k′ |
n,k〉 = 0 and that the
normalization coefficient A reads A = 1/(2

√
L). Note that

if on the strip we have a non-zero scalar potential 1̂V , we will
just have to substitute E by E − V and replace k by k̃, with k̃
given by

k̃2 = (E − V )2

v2
Fh̄2

− v2
Fm2

h̄2
− q2

n . (35)

3.2. Dirac fermions in a strip with a step potential

Let us now consider the scattering of Dirac fermions in a strip
by a simple step potential, as represented in figure 4. In zone I
one has V = 0, the wavefunction is given by equation (34);
in zone II, with V > 0, the wavefunction is also given by
equation (34) making the replacement k → k̃. If, in general,
the step rises up at x = X the boundary condition takes the
form

ψn,k(X, y)+ rnψn,−k(X, y) = tnψn,k̃(X, y). (36)

Solving for r and t gives

rn = z2
n,k − zn,kzn,k̃

1 + zn,k zn,k̃

e2ikX , (37)

tn = 1 + z2
n,k

1 + zn,kzn,k̃

e−i(k̃−k)X . (38)

Equations (37) and (38) represent the reflection and the
transmission amplitudes, respectively, for the transverse mode
n. It is now a simple matter to compute the tunnelling
transmission for an arbitrary configuration of finite potential
steps by using these two results combined with a transfer
matrix method [87]. A particular case of this situation is
transmission through a potential barrier, for which |tn|2 is given
in figure 5.
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n 

Figure 5. Transmission coefficient, T (qn) = |tn |2, through an energy
barrier of length w = 100 nm and height V = 50 eV as a function of
the transverse quantization quantum number n. The energy of the
electron is taken as E = 0.1 eV and the width of the ribbon is
L = 500 nm.

3.3. Trapped eigenmodes

In this section we will show that it is possible to trap massless
Dirac electrons in a ribbon of finite width L by creating a p–
n–p junction [88, 90]. The effect exploits the fact that the
spectrum of a finite ribbon exhibits energy gaps. A similar
study was done in [94] for the bulk case. In this case, such
a confinement is possible for certain incident angles of the
eigenmodes on the potential walls [94]. The potential profile
considered is shown in figure 6. We show that the trapping of
the eigenmodes requires evanescent modes in the x direction.
This can be accomplished using a scalar potential.

In order to solve this problem let as again consider the
case of a potential step as in figure 6. In region I (x < w) the
wavefunction has the form (34) and in region II (x > w) the
form would be the same with k replaced by

k̃ =
√(

E − V

vFh̄

)2

− q2
n . (39)

One now makes the observation that if qn obeys the condition

(E − V )2

v2
Fh̄2

< q2
n <

E2

v2
Fh̄2

, (40)

one has a propagating wave in region I and an evanescent wave
in region II. Within the validity of equation (40) it is more
transparent to write the wavefunction in region II as

ψIIn,k̃
(x, y) = 1

2
√

L

[(
1

is′ α+qn√
q2

n −α2

)
eiqn y

+
(

is′ α+qn√
q2

n−α2

1

)
e−iqn y

]
e−αx , (41)

with

k̃ = iα = i

√
q2

n −
(

E − V

vFh̄

)2

, (42)

where s ′ = sgn[E − V ]. Of course, the same type of analysis
would hold if one considered the step at x = 0, starting at the
interface between regions III and I. The trapping ‘mechanism’
uses this fact. The wavefunction in region I of figure 6 is
taken as a sum of two counter-propagating waves along the x
direction, whereas in regions II and III only evanescent waves
exist. Imposing the boundary conditions at x = 0 and w (w
the width of the well) one obtains after a lengthy calculation
the condition of the energy of the trapped eigenmodes

sin(kw)F(E, V , qn)+ cos(kw)G(E, V , qn) = 0, (43)

with

F(E, V , qn) = i

16
[−4(z∗

n,k + zn,k)
2 − (zn,k − z∗

n,k)(zn,α

+ zn,−α)− (z3
n,k − (z∗

n,k)
3)(zn,α + zn,−α)], (44)

and

G(E, V , qn) = 3
16 (zn,k + z∗

n,k + z3
n,k + (z∗

n,k)
3)(zn,α − zn,−α).

(45)
Both F(E, V , qn) and G(E, V , qn) are pure imaginary
numbers, as long as condition (40) holds true. In order to give
a flavour of the numerical solution of equation (43) we present
its numerical solution in table 1. We have chosen the strategy
of fixing the energy and looking for the values of w that satisfy
equation (43), for different values of qn.

4. Inducing mode mixing by scattering at a wall

In this section we want to discuss the scattering of Dirac
electrons when they propagate along a semi-infinite narrow

 

 

x

y

0 w

L

V = 0  V  = 0

x

y

0 w

E

Zone III Zone I Zone II

V = 0

Figure 6. Scheme of the confinement (along y) in a strip where a scalar potential well, of width w, was created. On the left one has an upper
view and on the right one has a side view. The dashed lines represent the confinement of the electrons.
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Table 1. Values of w (in nm) for a given momentum qn (in nm−1).
The parameters are s = 1, s′ = −1, vF = 106 m s−1, E = 0.1 eV,
V = 0.15 eV and L = 500 nm.

n w n w n w n w

5 ∼59 6 ∼65 7 ∼78 8 ∼113

channel and scatter back at the wall located at the end of the
channel. This problem is intimately related to the possibility
of finding a solution for the eigenmodes and eigenstates of
trapped Dirac electrons in a square box. Our analysis hints
at the reason why this solution has not been found yet.

4.1. Definition of the problem

Let us now consider massless Dirac fermions confined in a
semi-infinite strip: x < 0 and 0 < y < L. We will look
for scattering states produced by the scattering at the wall due
to an incoming wave from x → −∞. As before, the fermions
are confined by an infinite mass term outside the strip.

The scattering state is a sum of an incoming wave,
with energy E , longitudinal momentum k and transverse
momentum qn, with a superposition of all the possible outgoing
channels with reflection amplitude rn,m , and it can be written
as


n,k(x, y) =
(

1(x, y)

2(x, y)

)

=
[(

1
zn,k

)
eiqn y +

(
zn,k

1

)
e−iqn y

]
eikx

+
∞∑

m=0

rn,m

[(
1

zm,−km

)
eiqm y +

(
zm,−km

1

)
e−iqm y

]

× e−ikm x . (46)

Since we are considering elastic scattering (
 is an eigenstate),
we must have

E2 = k2
m + q2

m = k2 + q2
n ,

i.e.,
k2

m = k2 + q2
n − q2

m . (47)

We must distinguish two situations:

q2
m < E2 ⇒ km =

√
E2 − q2

m, (48)

q2
m > E2 ⇒ km = i

√
q2

m − E2. (49)

The second case corresponds to evanescent modes. We
must choose this solution if we want the wavefunction to be
convergent for x → −∞; for real km the choice of sign
reflects the fact that we have only one incoming mode. We
now simplify the notation, using the fact that k and n are fixed,
and define

zn,k = k + iqn

s
√

k2 + q2
n

= zn, (50)

zm,−km = −km + iqm

s
√

k2 + q2
m

= z̃m . (51)

The parameter zn is just a phase, |zn|2 = 1; z̃m is also a phase
for propagating modes, but for evanescent modes |z̃m|2 �= 1.
For q2

m � E2, we obtain

z̃m ≈ −iqm(1 − E2/2q2
m)+ iqm

E
≈ i

E

2q2
m

→ 0.

4.2. Calculation of the reflection coefficients

The boundary condition at the end of the semi-infinite strip
x = 0 and 0 < y < L is (see section 5 for details)


1(0, y)+ i
2(0, y) = 0. (52)

Note that the boundary condition at an infinite mass vertical
wall is different from that of the horizontal case discussed
before. Applying the boundary condition (52) to 
n,k(x, y)
and after rather lengthy algebra (where the replacement −(m+
1) = m ′ is made at some stage and m ′ is redefined as m
afterwards) one arrives at the condition

∞∑
m=−∞

I (n,m) eiqm y = 0, (53)

with I (n,m) given by

I (n,m) ≡ [
(1 + izm) δn,m + rn,m(1 + iz̃m)

]
θ(m + 1/2)

+ [
(z−m−1 + i) δn,−m−1 + rn,−m−1(z̃−m−1 + i)

]
× θ(−1/2 − m). (54)

The crucial step in the derivation is the observation that
the set of functions {φm = eiqm y,m = 0,±1,±2, . . .} is
overcomplete. In fact, the set of states with m even (or with
m odd) is, by itself, a complete orthogonal set for functions
defined in the interval 0 < y < L. If follows that we obtain
an equivalent set of conditions to equation (53) by taking inner
products of equation (53) with φm with m even (or m odd). We
recall the inner products (choosing p even) to be

1

L

∫ L

0
dy e−i(qp−qm)y

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, p = m

0, m is even, m �= p

2

i(p − m)π
, m is odd.

(55)

The fact that the integral (55) is not a Kronecker symbol
shows that, in this case, the basis is overcomplete. Using
equation (55), we obtain

I (n, p)+
∑
modd

2

i(p − m)π
I (n,m) = 0

p = 0,±2,±4, . . . (56)

which is the central result of this section. This is the set of
equations needed to calculate the rn,m coefficients. Naturally
the convergence of the sum in (56) critically depends on the
behaviour of rn,m with m.

We could also have formulated the scattering problem
a bit more generally, considering, for example, the case of

8
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a wave that approaches a wall at x = −D coming from
x = +∞. Naturally the modifications relative to the solution
found before cannot be extensive, given the symmetry of the
problem. The first thing to note is that the boundary condition
is slightly changed, being given by (see section 5 for details)


1(−D, y)− i
2(−D, y) = 0. (57)

Working out the problem along the same lines as before, one
learns that the final result can be obtained from the previous
solution upon the replacements

rn,m → rn,m eiD(k+km ), (58)

zm → −1/zm, (59)

z̃m → −1/z̃m, (60)

where the transformation (58) is obtained using the generator
of translations, T̂ (x0) = eix0 p̂/h̄ (with p̂ the momentum
operator), and follows from the new position of the wall. The
transformations (59) and (60) follow from the difference in
the boundary condition between a right and a left vertical
wall. One should note that the transformation (58) is not a
phase for evanescent waves. Using transformations (58)–(60)
in equation (54) one obtains

I (n,m) → [(1 + i/zm)δn,m + eiD(k+km )rn,m(1 + i/z̃m)]
× θ(m + 1/2)− [(1/z−m−1 + i) δn,−m−1

+ eiD(k+k−m−1 )rn,−m−1(1/z̃−m−1 + i)]θ(−1/2 − m). (61)

Naturally, the exact solution of the scattering problem
rests upon the possibility of solving exactly the set of
linear equations (56). This task seems out of reach at the
moment. The second approach is to solve this set of equations
numerically. This leads to the conclusion that the summation
over m has to be truncated at some value. To be concrete,
let us consider the particular case of an incoming mode with
transverse quantum number n = 0, such that the value of the
incoming longitudinal momentum k originates Np propagating
modes above the mode n = 0 (0 < Np < N). Then
the numerical solution of the problem has to satisfy the
conservation of the probability density current (it must be 1 in
this case) and the retained coefficients after the truncation have
to converge upon increasing N . As we show below, both these
two conditions are satisfied for small N . For the numerical
solution we choose n = 0, q0 = π/2, such that the value of
k = 2π leads to n = 0 and 1 as the only two propagating
modes. We use a set of units such that L = 1 and h̄vF = 1.
Further we take E > 0, which implies that s = 1 since the
scattering, being elastic, cannot excite hole states which have
E < 0. The equations to be solved numerically are given in
appendix A.

The probability density current transported by the mode n
is defined as

Sn(x, y) = vFψ
†
n (x, y)σψn(x, y). (62)

Since the motion is transversely confined, what is needed is the
probability density current along the x-direction, which reads

Sn(x) = vF

∫ L

0
dy ψ†

n (x, y)σxψn(x, y). (63)

-1 -0.5 0 0.5 1
 k/( 2 π )

0

5

10

E
ne

rg
y

[a
.u

.]

n=0
n=1
n=2
 E

4 6 8 10
 N

0.99

1

1.01

Sx
T,ref.

Figure 7. Left panel: energy levels for n = 0, 1, 2 and k = 2π . This
leads to Np = 1. Right panel: sum rule (64) for Np = 1 as a function
of N = 3, 4, . . . , 10. We have depicted only odd values of N , such
that the total number of odd and even terms is the same (n = 0 is
considered even), but our results are independent of this choice.

Using definition (63), the total reflected flux density, ST,refl
x ,

obeys the sum rule

ST,refl
x = |r0,0|2 +

Np∑
m=1

cos βm

cos β0
|r0,m |2 = 1, (64)

with
βn = arctan

qn

kn
, (65)

with both qn and kn real. In agreement with our expectations,
the sum rule is better fulfilled the larger N is, although modest
values of N do a good job as well. In fact, in the right panel
of figure 7 one can see that the sum rule is fulfilled even
considering only one evanescent mode (N = 3).

In figure 8 we study, for the particular mode occupation
defined in the left panel of figure 7, the evolution of the
coefficients r0,n as a function of N . We write each coefficient
r0,p as r0,p = |r0,p| eiα0,p . In figure 8, we plot the square of
the modulus of r0,p (left panels) and the corresponding phase
α0,p (right panels), separating the cases for which p = 0, 1
(propagating modes), which are represented in the two top
panels, from those where p � 2, . . . , 7 (evanescent modes),
which we represent in the two bottom panels. A beautiful
result emerges from this study. The wall introduces mode
mixing and generates evanescent waves, whose contribution
to the total wavefunction diminishes upon increasing p. This
result is quite different from that for Schrödinger electrons,
where no mode mixing takes place. The fundamental reason
is due to the fact that for Schrödinger electrons the transverse
wavefunction is the same for the incoming and outgoing waves.
For Dirac electrons, on the contrary, the spinor of the incoming
and outgoing waves changes due to its dependence on either
the incoming or outgoing momentum.

Had we tried to force the solution of the problem using
only one incoming and one outgoing propagating mode, with
the same k value, we would have obtained the trivial solution
k = 0. This statement is easily proved as follows: we make the

9
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Figure 8. Top panels: evolution of |r0,0|2 and |r0,1|2 as a function of N (left); evolution of the phases α0,0 and α0,1 as a function of N (right).
Bottom panels: the same as before but now for |r0,p|2 (left) and for α0,p (right), considering p = 2, . . . , 7.

assumption that the total wavefunction should be a sum of two
terms of the form


n,k(x, y) =
(

1(x, y)

2(x, y)

)

=
[(

1
zn,k

)
eiqn y +

(
zn,k

1

)
e−iqn y

]
eikx

+
[(

1
zn,−k

)
eiqn y +

(
zn,−k

1

)
e−iqn y

]
e−i(kx−2δ), (66)

where the phase shift δ was introduced. Let us now impose the
boundary condition (52) on the wavefunction (66). Working
out the calculation, one obtains two conditions that must be
fulfilled simultaneously

cos δ ± sin(βn,k − δ) = 0, (67)

with βn,k defined from zn,k = eiβn,k . It is clear that the two
conditions in equation (67) cannot be satisfied, in general, at
the same time, which precludes the proposal of equation (66)
as a solution to the problem. In fact, the two conditions given
by equation (67) are equivalent to

δ = π

2
+ �π ∧ δ = βn,k + �π, � = 0, 1, 2, . . . , (68)

which can only be true if 2βn,k = π , a situation that occurs
only if

arctan
qn

k
= π

2
, (69)

which finally is true only in the trivial case k = 0. This
means that the wavefunction has no x dependence and that
the electronic density is ρ(x, y) = 


†
n,k(x, y)
n,k(x, y) =

1/L, constant everywhere (for finite m the density does show
oscillations inside the box [89]). The exact solution of the
square billiard with infinite mass confinement is therefore a
quite elusive problem [91].

θ

θ
0

1 α

n

x

y

D

OD

s

Figure 9. Domain D with the boundary parametrized by s. Figure
adapted from [91]. The incident and reflected wave at s are both
shown.

5. Confinement of Dirac fermions in quantum dots

Let us now consider the confinement of Dirac fermions in
quantum dots. Naively one would expect that the rectangular
dot would have a simple solution (as it has in the Schrödinger
case), since the wavefunction of the confined Dirac electrons
(by an infinite mass term) in a strip can be written in terms
of elementary trigonometric functions. In fact this is not the
case. The only known case so far of an integrable Dirac dot
(billiard), subjected to infinite mass confinement, is the circular
one. In order to solve this problem one needs the boundary
condition obeyed by the wavefunction at the dot boundary.
This was worked out by Berry and Mondragon [91] and the
geometry they used is represented in figure 9. They considered
a quantum dot represented by a domain D of arbitrary shape,
separated by an outside region that we denote O D. The
boundary of the domain D is parametrized by an length arc
s(α), where the vector normal to the surface of the dot at s is
given by

n(s) = cosα(s)	ex + sinα(s)	ey . (70)

10
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Imposing the condition of zero flux perpendicular to the wall
of the dot one obtains

ψ2

ψ1
= iB eiα(s). (71)

The constant B is determined by working out the study of a
reflecting wave at the boundary of the dot, when the mass in
the region O D obeys the condition M → ∞. The final result
is B = 1 [91], and the detailed calculation can be found in
appendix B.

5.1. The circular dot with zero magnetic field

Let us first write the free solutions of the Dirac equation
in polar coordinates r and ϕ. In this coordinates the Dirac
Hamiltonian and the wavefunction read [95, 73, 96–98]

H = −ih̄vF

(
0 e−iϕ

(
∂r − i

r ∂ϕ
)

eiϕ
(
∂r + i

r ∂ϕ
)

0

)
, (72)

and


k,m(r, ϕ) =
(

Jm(rk) eimϕ

siJm+1(rk) ei(m+1)ϕ

)
, (73)

respectively, where Jm(x) is the Bessel function of integer
order m. A detailed derivation of these results is given in
appendix C. In order to obtain the eigenvalues of the electrons
in the dot one has to apply the boundary condition (71).
Note that because one has a circular dot α(s) = ϕ. This
latter property makes it possible to satisfy the boundary
condition (71) with the wavefunction (73) alone. In fact, for
a dot of radius R, one has

siJm+1(Rk) ei(m+1)ϕ = Jm(Rk) eimϕ i eiϕ ⇔ s Jm+1(Rk)

= Jm(Rk), (74)

whose numerical solution gives the value of k R for a given
s and m, and from this the energy levels are computed using
Es,m, j = sh̄vFks,m, j . The eigenvalues Es,m, j are defined by
three quantum numbers, s, m and j , where j represents the
ascending order of the values of k R that satisfy (74), for a given
s and m. In section 5.2 we give numerical results for the energy
eigenvalues.

5.2. The circular dot in a finite magnetic field

Let us now see how we can adapt our formalism to address
the calculation of the energy eigenvalues of a circular dot in
a magnetic field, that is we want to study the formation of
Landau levels in reduced geometries (amusingly enough, the
first calculation of Landau levels using the Dirac equation is
as old as quantum mechanics itself [99], a result that was
forgotten by graphene scientists). Experimentally this situation
has been realized in [100]. The cyclotron motion of bulk
graphene was discussed in [101].

The Hamiltonian (72) was written for a single Dirac cone.
As shown in appendix C, the Hamiltonian for the two Dirac
cones can be written using an additional quantum number
κ = ±, associated with the valley index, reading

Hκ = −h̄vF

(
0 i∂x + κ∂y

i∂x − κ∂y 0

)
. (75)

In this section we do not use the infinite mass boundary
condition, but introduce the zigzag type boundary condition.
This will allow us to consider the presence edge states [102].
As we will show in section 5.3, these states are always present
in graphene quantum dots. Recalling figure 1, one sees that
at the zigzag edge only one type of carbon atom (either A or
B) is present. The boundary condition at a zigzag edge with,
say, only B atoms present, requires that the amplitude of the
wavefunction at the A atoms to be zero; we therefore have the
condition

ψ1(R, ϕ) = 0. (76)

In the following we will choose the boundary condition defined
by equation (76), for which the wavevector is quantized as
k = zmj/R, where zmj denotes the j th root of the mth Bessel
function, Jm(zmj ) = 0.

A magnetic field 	B = B	ez , perpendicular to the
graphene sheet, gives rise to a vector potential, which in polar
coordinates reads 	A = Aϕ	eϕ , and, using the Gauss theorem,
one obtains 2πr Aϕ = πr 2 B . Making the traditional minimal
coupling of the charged electrons to the vector potential, the
Hamiltonian has the form

Hκ = −ih̄vF

(
0

eiκϕ
(
∂r + κ i

r ∂ϕ − κ πBr
�0

)

e−iκϕ(∂r − κ i
r ∂ϕ + κ πBr

�0
)

0

)
, (77)

where �0 = h/e � 4136 T nm2 denotes the elementary flux
quantum and −e is the electron charge. We now make the
observation that the trial function


m,κ (r, ϕ) =
(

ψ1
m,κ (r) eimϕ

ψ2
m,κ (r) ei(m+κ)ϕ

)
, (78)

renders the eigenvalue problem a one-dimensional one, with
the radial Hamiltonian given by

Hκ = −ih̄vF

(
0 ∂r + κm+1

r + κ πBr
�0

∂r − κm
r − κ πBr

�0
0

)
.

(79)
Let us make the substitution ψ i = ψ̃ i/

√
r (i = 1, 2) in the

eigenvalue equation defined by the Hamiltonian (79), with the
radial spinor wavefunction having the form ψ = (ψ1, ψ2).
This substitution was considered before in the exact solution
of the Coulomb problem in the 2 + 1-dimensional Dirac
equation [103] and also in [96]. This procedure leads to a more
symmetric eigenproblem of the form

−ih̄vF

[
∂r ψ̃

2
m,κ (r)+

(
κm + 1/2

r
+ κ

πBr

�0

)
ψ̃2

m,κ (r)

]

= Eψ̃1
m,κ (r), (80)

−ih̄vF

[
∂r ψ̃

1
m,κ (r)−

(
κm + 1/2

r
+ κ

πBr

�0

)
ψ̃1

m,κ (r)

]

= Eψ̃2
m,κ (r). (81)

We want to solve the eigenproblem defined by (80) and (81)
by diagonalizing a Hermitian matrix. To this end let us look
at the problem of a dimerized one-dimensional tight-binding
model, such as that represented in figure 10. The relevance of
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BA nn–1 n+1

t(n–1) t(n–1,n)

Figure 10. Representation of a dimerized chain of atoms A and B.
Within the unit cell n the hopping is t (n) and between the unit cells n
and n + 1 the hopping is t (n, n + 1). They can be functions of the
unit cell position n.

this interlude will be apparent in a moment. The Hamiltonian
for the depicted system is

H =
∑

n

[t (n)|n A〉〈nB| + t (n, n + 1)|nB〉〈n + 1A| + h.c.],
(82)

and the wavefunction is written as

|
〉 =
∑

n

(an|n A〉 + bn|nB〉). (83)

The eigenvalue equation H |
〉 = E |
〉 can be reduced to the
solution of the linear homogeneous system

bnt (n)+ bn−1t (n − 1, n) = an E, (84)

ant (n)+ an+1t (n, n + 1) = bn E . (85)

Introducing the simplifying notation t (n, n + 1) = t ′(n), the
above eigensystem reads

bnt (n)+ bn−1t ′(n − 1) = an E, (86)

ant (n)+ an+1t ′(n) = bn E . (87)

We note that equations (86) and (87) pose a well-defined
numerical problem for well-behaved functions t (n) and t ′(n).
Let us now see what kind of continuous model follows from
this lattice problem. Notice that, since the model under
consideration has a valence and a conduction band, in the case
where we have one electron per site the relevant energies are
around zero. In this case, the amplitudes an and bn oscillate
between positive and negative values within a lattice unit cell.
In order to construct a well-defined continuous model we need
to subtract this oscillatory behaviour, making the replacement
an = i(−)nãn and bn = (−)nb̃n . This produces the set of
equations

−i[b̃nt (n)− b̃n−1t ′(n − 1)] = ãn E, (88)

−i[−ãnt (n)+ ãn+1t ′(n)] = b̃n E . (89)

Defining now T (n) = [t (n) + t ′(n)]/2 and �(n) = [t (n) −
t ′(n)]/2 and recalling that the first order derivatives can be
approximated by

∂r ã → [ã(rn+1)− ã(rn)]/�r, (90)

∂r b̃ → [b̃(rn)− b̃(rn−1)]/�r. (91)

and that �r = R/Nl , rn = Rn/Nl a discretized position
vector, with R the length of the chain (which will correspond
later to the radius of the dot), n = 1, . . . , Nl , and Nl the
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Figure 11. Forty energy levels of a circular graphene quantum dot in
a finite magnetic field as a function of the angular momentum
quantum number m. The radius of the dot is R = 70 nm, three
magnetic fields were used, B = 1, 10, 30 T (from left to right), and
κ = 1. The two surface states (for m > 0) are represented using
squares and circles.

number of points in which the length R was discretized, we
obtain

−i[T (r)�r∂r b̃ + 2�(r)b̃] = ãE, (92)

−i[T (r)�r∂r ã − 2�(r)ã] = b̃E . (93)

We can thus make the following addition to the continuous
model:

T (r) = h̄vF

�r
, (94)

±2�(r) = κm + 1/2

r
+ κ

πBr

�0
= Q(r). (95)

The ambiguity introduced by the ± sign in equation (95) can be
settled by looking at the bulk limit of the problem. The choice
that gives the correct answer is t ′(n) = T (r) + Q(r)/2 and
t (n) = T (r)− Q(r)/2. If we assume that the wall of the dot is
located at n = Nl , then the boundary condition (76) is imposed
considering ψ̃1

Nl
= 0. In order to keep the problem particle–

hole symmetric, we consider the case where the effective chain
problem has Nl unit cells.

In figure 11 we represent the numerical solution of
equations (86) and (87). It is clear that at small fields the
bands are essentially symmetric for positive and negative m
values, a property that comes from the fact that exchanging m
by −m in the Dirac equation only replaces the role of ψ1

n and
ψ2

n . With a finite magnetic field the situation changes. Also
seen is the presence of a dispersive edge state. The dispersive
part, occurring for positive m, is dependent on the Dirac point.
Note the appearance of the zero energy Landau level upon
increasing the magnetic field. The different behaviour, for large
fields, shown by the energy levels for positive and negative m
is associated with the amount of angular momentum induced
by the magnetic field.

Let us now discuss how to include the Coulomb
interaction in the calculation. This is important because the
screening in the dot may not be very effective and because

12
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the dot may be working under a regime where it has a net
charge density (charged dot). The situation of a charged dot is
represented in figure 12. The gate potential Vg induces either
holes or electrons in the dot. This causes a situation where
the dot is charged, since the neutrality case occurs when the
chemical potential is at the Dirac point. If we take the graphene
to be at a potential Vg then the charges accumulated in the
metal–insulator interface have to be at zero potential. This
means that one must use a set of images charges at a distance
t from the interface with exactly the same spatial density of
that formed in the graphene dot. We then have to describe the
Coulomb interaction of an electron in the dot with both the
self-consistent charge density in the graphene and its image
underneath the metal–insulator interface [107]. The simplest
way to include the effect of Coulomb repulsion is by using
the self-consistent Hartree approximation. We analyse here the
effects induced by increasing the number of electrons in the
dot using the Hartree approximation [104]. The self-consistent
Hartree potential describes, within a mean field approximation,
the screening of charges within the dot. We assume that a
half-filled dot is neutral, as the ionic charge compensates the
electronic charge in the filled valence band. Away from half
filling, the dot is charged. Then, an electrostatic potential
is induced in its interior, and there is an inhomogeneous
distribution of charge. We describe charged dots by fixing
the chemical potential, and obtaining a self-consistent solution
where all electronic states with lower energies than the Fermi
energy are filled. From this calculation we obtain the Hartree
electronic energy bands. The Hartree approximation should
give a reasonable description when Coulomb blockade effects
can be described as a rigid shift of the electrostatic potential
within the dot [105, 106]. Using the same discretization
procedure as before, the numerical equations to be solved now
have the form

vH(n)an + bnt (n)+ bn−1t ′(n − 1) = an E j,m, (96)

vH(n)bn + ant (n)+ an+1t ′(n) = bn E j,m . (97)

where the Hartree potential in the continuum, vH(r), is given
by

vH(r) = v0

∫
r ′ dr ′ dϕK(r, r′, t)

� v0
R

Nl

∑
n′ �=n

∫ 2π

0
dϕ r ′

n K(rn, r
′
n, t), (98)

and

K(r, r′, t) = ρ(r ′)√
r 2 + (r ′)2 − 2rr ′ cosϕ

− ρ(r ′)√
r 2 + (r ′)2 − 2rr ′ cos ϕ + 4t2

(99)

with the parameter v0 given by v0 = (e2/4πε0ε) and ρ(rn) the
electronic density at point rn , computed from

ρ(rn) = gC
∑

m

∑
jm �= jm,spur.

[a2
n,m, jm + b2

n,m, jm ]/rn, (100)

such that the sums over m and jm are constrained to those
energy levels such that Em, j � EF (note that the explicit

SiO 2

graphene dot

Vgt

+
Sit

image charges

Figure 12. Lateral view of graphene FET. When the dot is gated the
charge accumulates at the metal–insulator (Si+–SiO2) interface. The
thickness of the insulator is t and the applied gate potential is Vg.

dependence of an and bn on m and jm has been introduced
in equation (100)), where EF is the Fermi energy measured
relative to the Dirac point, g is the spin and valley degeneracy
and the constant C is given by the normalization condition on
the disc, C = (2π�r)−1. The constraint in the j summation in
equation (100) is due to the fact that the boundary conditions
introduced by the finite tight-binding chain fails to reproduce
accurately the boundary condition ψ̃i (r → 0) → 0,
introducing a spurious mode characterized by the quantum
number jm,spur. = Nl + 1 for m � 0; in order for sensible
results to be obtained these modes have to be removed.

We note that the integral (98) is well behaved since the
self-interaction has been excluded (n �= n′). Further the ρ(rn′)

is independent of ϕ. The angular integral in equation (98) can
be formally computed leading to

vH(n) = 4v0
R

Nl

∑
n′ �=n

[
rn′ρ(rn′)

rn + rn′
K
(

4rnrn′

(rn + rn′)2

)

− rn′ρ(rn′)√
(rn + rn′)2 + 4t2

K
(

4rnrn′

(rn + rn′)2 + 4t2

)]
. (101)

with K(m) defined as

K(m) =
∫ 1

0
dx[(1 − x2)(1 − mx2)]−1/2. (102)

The elliptic integral K(m) can be approximated by an
analytical function [108], which reduces the numerical effort.
It is now clear that, due to the Hartree potential, the problem
defined by equations (96) and (97) has to be solved self-
consistently.

One should comment on the fact that for a large dot
R � t the contribution from vH(r) essentially vanishes and
the change of the bands due to the Hartree term is vanishingly
small. On the contrary, for small dots R ∼ t and the Hartree
renormalization of the electronic energy levels can be very
important in the case of heavily charged dots.

In figure 13 we represent the energy bands of a quantum
dot of radius R = 100 nm on top of a silicon oxide slab of
thickness t = 100 nm. We used a gate voltage of Vg = 2 V,
which corresponds to a Fermi energy of EF = 0.077 eV for
the bulk system; the values of the magnetic field used were
B = 1 T (top panels) and B = 3.5 T (bottom panels). It is

13
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Figure 13. Independent and Hartree energy levels for a spherical quantum dot with R = 100 nm, on top of a silicon oxide slab of t = 100 nm
(ε = 3.9), for a Fermi energy EF = 0.077 eV (represented by a dashed line). For B = 1 T, the number of electrons in the dot is Ne = 166 and
the magnetic length is �B = 26 nm; for B = 3.5 T, the number of electrons in the dot is Ne = 178 and the magnetic length is �B = 14 nm.
The left panels are the independent energy bands; the right ones are the Hartree bands. The top row is for B = 1 T. The lattice has Nl = 100.

clear that the Hartree bands are renormalized by the Coulomb
interaction. In figure 14 we represent the self-consistent
density, ρ(r), and Hartree potential, vH(n), for two different
values of the magnetic field. The parameters are those given in
the caption of figure 13. The increase in the Hartree potential
upon increasing B is due to the increase in the number of
electrons in the dot.

We should comment that in our calculation we have not
tried to keep the number of electrons fixed. This can easily be
done, but increases the computational effort since the chemical
potential has to be self-consistently determined. Instead, we
have chosen to keep the Fermi energy constant, which, of
course, leads to a change in the number of electrons in the dot
with the variation of the magnetic field. Also the population of
the surface states was not included in the calculation, using a
criterion of computational simplicity. In a future study we shall
relax these two constraints.

Another important aspect in quantum dot physics is that
of confinement introduced by the potential creating the dot.
The confinement potential can either be due to etching or to
applied gates. In the case of dots or narrow channels described
by the Schrödinger equation, a very popular confinement is
that introduced by a parabolic potential [109], since it allows a
simple analytical solution. We choose a confinement potential
given by

Vconf(r) = Uc(r/R)4, (103)

which rises smoothly from the centre of the dot. The prefactor
Uc is the strength of the potential at the edge of the dot.
As in the case of the Hartree potential, Vconf(r) enters in
the diagonal part of the radial Hamiltonian. In figure 15
we give a comparison of the energy bands for B = 10 T.
Comparing the left and the right panels of figure 15 we see
that the Landau levels become dispersive with m due to the
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v H
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Figure 14. Self-consistent electronic density (left) and Hartree
potential vH(n) (right) for the same parameters given in the caption
of figure 13.

confinement, a result also found for Landau levels derived
from the Schrödinger equation [109]. Interestingly, we see
that the confinement also breaks the particle–hole symmetry
of the problem, a result found previously for the ribbon
problem [110].

5.3. The hexagonal and circular dots at the tight-binding level

In this section we want to address the question of
whether graphene quantum dots will or will not have edge
states, starting from the full solution of the tight-binding
Hamiltonian (10). Edge states in graphene nanostructures are
of particular importance since they can give rise to magnetism
(see, for example, [111]). In order to access the low energy

14
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Figure 15. Energy spectrum of a graphene quantum dot at B = 10 T.
From left to right: independent particle bands, Hartree bands and
independent particle bands with the confinement potential (103). The
parameters are Uc = 0.1 eV, Vg = 5 V, EF = 0.12 eV; the remaining
parameters are those used in figure 13. The magnetic length is
�B = 8 nm and the number of electrons in the dot is Ne = 463.

RR

Figure 16. Representation of a graphene crystallite on top of which
hexagonal or circular dots can be patterned. The size of the dot is
defined by the length R.

density of states of dots with physically relevant sizes (bigger
than 10 nm) a Lanczos technique is used, since the exact
diagonalization of systems of this size becomes intractable.
For a brief introduction to the Lanczos technique see, for
example, [112].

We have chosen to diagonalize dots of circular and
hexagonal shape with zigzag termination, such as those
depicted in figure 16. Our numerical findings are represented in
figure 17. It is clear that as the size of the dot grows larger the
number of zero energy states increases, indicating the presence
of zero energy edge states, even in circular geometry. It is also
clear that the number of edge states is larger in the case of a
hexagonal dot due to its perfect zigzag termination, such that
each side of the hexagon has either a surplus of A or B atoms.
When a finite t ′ is added to the Hamiltonian, the edge states
become dispersive [40] and there is a reduction in the density
of zero energy states (seen in the hexagonal dot).

6. Final comments

In this work a description of the confinement of Dirac electrons
in nano-wires and quantum dots was given. It was shown
that, in principle, it is possible to localize electronic modes in
a spatial region of a nano-wire, using a p–n–p gate potential
setup. The energy spectrum of quantum dots in a magnetic field
was described taking into account both the effect of electron–
electron interactions, at the Hartree level, and the effect of
confining potentials. Exchange [113–115] can in principle
be included in this study. The interesting aspects about
this possibility are two-fold: first, the exchange energy for
Dirac electrons is different from that for the two-dimensional
electron gas described by the Schrödinger equation; second,
and contrary to the Hartree potential, the exchange energy of
the full electronic system has to be considered, since there is
not an equivalent cancellation effect to that found in the Hartree
potential between the ion background and the direct Coulomb
energy of the valence electrons. These aspects will be pursued
in a follow-up study [116].
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Appendix A. Equations for the numerical solution of
the scattering problem

Below we give the equations that were solved numerically
when we studied the scattering problem by a wall of infinite
mass. These are:

• p = 0:

[
(1 + iz0)+ r0(1 + iz̃0)

]+ 2

iπ

[
(z0 + i)+ r0(z̃0 + i)

]

+
∑

modd>0

−2

imπ

[
rm(1 + iz̃m)

]

+
∑

meven>0

2

i(m + 1)π

[
rm(z̃m + i)

] = 0, (A.1)

• p �= 0 and even:

rp(1 + iz̃ p)+ 2

i(p + 1)π

[
(z0 + i)+ r0(z̃0 + i)

]

+
∑

modd>0

2

i(p − m)π

[
rm(1 + iz̃m)

]

+
∑

meven>0

2

i(p + m + 1)π

[
rm(z̃m + i)

] = 0, (A.2)

with the possibility of having m = p in the meven

summation
• p odd

rp(z̃ p + i)+ − 2

ipπ

[
(z0 + i)+ r0(z̃0 + i)

]

+
∑

modd>0

−2

i(p + 1 + m)π

[
rm(1 + iz̃m)

]

+
∑

meven>0

2

i(−p + m)π

[
rm(z̃m + i)

] = 0, (A.3)

with the possibility of having m = p in the modd summation.
It is clear that we can truncate this set of equations to obtain a
set of N equations for the coefficients r0, . . . , rN−1.

Appendix B. General boundary conditions in a
quantum dot with infinite mass confinement

In this appendix we give all the details of how to obtain
the boundary condition of the wavefunction at the wall of a
quantum dot, with the confinement determined by the infinite
mass condition. We must compute the wavefunction in the
domain D due to a reflection at the boundary. We write the
plane wave inside D as


D =
(

1
eiθ0

)
ei	ki ·	r + R

(
1

eiθ1

)
ei	k f ·	r , (B.1)

where from figure 9 we can conclude that θ1 = π+2α−θ0, and
	ki and 	k f are the momenta of the incident and reflected waves
at the boundary of the dot. In order to calculate ψ2/ψ1 (which
will make it possible to compute the value of B), we need
to discover the value of the reflection coefficient R. We can
accomplish this using the fact, required by the Dirac equation,

that the components of the spinors must be continuous at the
boundary.

First we solve the Dirac equation with a mass Mv2
F > E .

For the sake of simplicity, we use the normal and tangential
coordinates n and s given by

n = x cosα + y sinα s = −x sinα + y cosα

which implies that,

∂x = (∂x n) ∂n + (∂x s) ∂s ∂y = (∂yn) ∂n + (∂ys) ∂s

∂x = cosα∂n − sinα∂s ∂y = sinα∂n + cosα∂s

resulting in
∂x ± i∂y = (∂n ± i∂s) e±iα.

Then, for a plane wave in the domain O D (complementary
to D), 
O D = T

( u
v

)
ei(kn n+ks s) (where T stands for the

transmission coefficient). Solving the Dirac equation explicitly
we obtain


O D = T

(
1

E−Mv2
F

ih̄vF(q−k) eiα

)
eiks−qn , (B.2)

where we have defined

kn = iq = i

√
M2v4

F − E2

h̄2v2
F

+ k2

and chosen the solution that decays for r → +∞. Further we
identified kn = iq and ks = k. Imposing the continuity of the
wavefunctions (B.1) and (B.2) at the boundary of the dot, one
obtains

1 + R = T, eiθ0 + R eiθ1 = T i eiα.

Replacing the value of R in equation (B.1), the wavefunction
in the dot reads


D = 1√
2

(
1

eiθ0

)
ei	ki ·	r − 1 + i e−i(α−θ0)

1 − i ei(α−θ0)

1√
2

(
1

eiθ1

)
ei	k f ·	r ,

which, after some simple manipulations, allows us to conclude
that

ψ2

ψ1
= i eiα

and therefore B = 1.

Appendix C. The Dirac equation in polar coordinates

To treat problems with circular symmetry, the partial
derivatives with respect to Cartesian coordinates shall be
written in polar coordinates (r, ϕ). For the x-coordinate, the
product rule yields ∂x = (dr/dx)y∂r + (∂ϕ/∂x)y∂ϕ , where the
derivatives are taken for fixed y. The first derivative is obtained
using r = √

x2 + y2. The second one uses tan ϕ = y/x and
thus (1/ cos2 ϕ)∂ϕ = −(y/x2)∂x . This gives

∂x = cos ϕ∂r − sin ϕ

r
∂ϕ, (C.1)
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and analogously

∂y = sinϕ∂r + cos ϕ

r
∂ϕ. (C.2)

The Hamiltonian thus reads

Hκ = −ih̄vF

(
0 e−iκϕ(∂r − κ i

r ∂ϕ)

eiκϕ(∂r + κ i
r ∂ϕ) 0

)
,

(C.3)
where we have introduced the additional quantum number κ ,
to account for the two non-equivalent Dirac points. Let us now
define the operators

L+ ≡ eiϕ

(
∂r + i

r
∂ϕ

)
, (C.4)

L− ≡ − e−iϕ

(
∂r − i

r
∂ϕ

)
, (C.5)

which acting on the product of a Bessel function of integer
order m, Jm(kr), and a complex exponential, eimϕ , produce
L± Jm(kr) eimϕ = −k Jm±1(kr) ei(m±1)ϕ . This last result leads
to the construction of the wavefunction of the free problem in
the form given in equation (73). In addition, the following
commutators [Lϕ, L±] = ±L± and [L+, L−] = 0 allow us
to interpret the operators L± as rising and lowering operators
of the angular momentum.

Finally we note that if we consider a ring instead of a disc
it is possible to add a flux through the ring, introducing a vector
potential 	A� = (�/2πr)	eϕ . The full Hamiltonian with both a
perpendicular magnetic field and the magnetic flux through the
ring is given by

Hκ = −ih̄vF

(
0

eiκϕ
(
∂r + κ 1

r

(
i∂ϕ − �

�0

)
− κ πBr

�0

)

e−iκϕ
(
∂r − κ 1

r

(
i∂ϕ − �

�0

)
+ κ πBr

�0

)
0

)
, (C.6)

and its numerical solution can be accommodated within the
explained method.
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